Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Clin Nutr ESPEN ; 60: 333-342, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38479932

RESUMEN

BACKGROUND: Recent studies suggest that proteomic cargo of extracellular vesicles (EVs) may play a role in metabolic improvements following lifestyle interventions. However, the relationship between changes in liver fat and circulating EV-derived protein cargo following intervention remains unexplored. METHODS: The study cohort comprised 18 Latino adolescents with obesity and hepatic steatosis (12 males/6 females; average age 13.3 ± 1.2 y) who underwent a six-month lifestyle intervention. EV size distribution and concentration were determined by light scattering intensity; EV protein composition was characterized by liquid chromatography tandem-mass spectrometry. RESULTS: Average hepatic fat fraction (HFF) decreased 23% by the end of the intervention (12.5% [5.5] to 9.6% [4.9]; P = 0.0077). Mean EV size was smaller post-intervention compared to baseline (120.2 ± 16.4 nm to 128.4 ± 16.5 nm; P = 0.031), although the difference in mean EV concentration (1.1E+09 ± 4.1E+08 particles/mL to 1.1E+09 ± 1.8E+08 particles/mL; P = 0.656)) remained unchanged. A total of 462 proteins were identified by proteomic analysis of plasma-derived EVs from participants pre- and post-intervention, with 113 proteins showing differential abundance (56 higher and 57 lower) between the two timepoints (adj-p <0.05). Pathway analysis revealed enrichment in complement cascade, initial triggering of complement, creation of C4 and C2 activators, and regulation of complement cascade. Hepatocyte-specific EV affinity purification identified 40 proteins with suggestive (p < 0.05) differential abundance between pre- and post-intervention samples. CONCLUSIONS: Circulating EV-derived proteins, particularly those associated with the complement cascade, may contribute to improvements in liver fat in response to lifestyle intervention.


Asunto(s)
Vesículas Extracelulares , Proteómica , Masculino , Femenino , Humanos , Adolescente , Niño , Proteómica/métodos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Cromatografía Liquida , Proteínas/metabolismo , Espectrometría de Masas
2.
Cancer Res ; 84(7): 1048-1064, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38315779

RESUMEN

Metabolic reprogramming is a hallmark of T-cell activation, and metabolic fitness is fundamental for T-cell-mediated antitumor immunity. Insights into the metabolic plasticity of chimeric antigen receptor (CAR) T cells in patients could help identify approaches to improve their efficacy in treating cancer. Here, we investigated the spatiotemporal immunometabolic adaptation of CD19-targeted CAR T cells using clinical samples from CAR T-cell-treated patients. Context-dependent immunometabolic adaptation of CAR T cells demonstrated the link between their metabolism, activation, differentiation, function, and local microenvironment. Specifically, compared with the peripheral blood, low lipid availability, high IL15, and low TGFß in the central nervous system microenvironment promoted immunometabolic adaptation of CAR T cells, including upregulation of a lipolytic signature and memory properties. Pharmacologic inhibition of lipolysis in cerebrospinal fluid led to decreased CAR T-cell survival. Furthermore, manufacturing CAR T cells in cerebrospinal fluid enhanced their metabolic fitness and antileukemic activity. Overall, this study elucidates spatiotemporal immunometabolic rewiring of CAR T cells in patients and demonstrates that these adaptations can be exploited to maximize the therapeutic efficacy of CAR T cells. SIGNIFICANCE: The spatiotemporal immunometabolic landscape of CD19-targeted CAR T cells from patients reveals metabolic adaptations in specific microenvironments that can be exploited to maximize the therapeutic efficacy of CAR T cells.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Humanos , Linfocitos T , Sistema Nervioso Central/metabolismo , Antígenos CD19/metabolismo , Receptores de Antígenos de Linfocitos T , Microambiente Tumoral
3.
Nat Commun ; 14(1): 5325, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658085

RESUMEN

The mechanisms underlying the transformation of chronic myeloid leukemia (CML) from chronic phase (CP) to blast crisis (BC) are not fully elucidated. Here, we show lower levels of miR-142 in CD34+CD38- blasts from BC CML patients than in those from CP CML patients, suggesting that miR-142 deficit is implicated in BC evolution. Thus, we create miR-142 knockout CML (i.e., miR-142-/-BCR-ABL) mice, which develop BC and die sooner than miR-142 wt CML (i.e., miR-142+/+BCR-ABL) mice, which instead remain in CP CML. Leukemic stem cells (LSCs) from miR-142-/-BCR-ABL mice recapitulate the BC phenotype in congenic recipients, supporting LSC transformation by miR-142 deficit. State-transition and mutual information analyses of "bulk" and single cell RNA-seq data, metabolomic profiling and functional metabolic assays identify enhanced fatty acid ß-oxidation, oxidative phosphorylation and mitochondrial fusion in LSCs as key steps in miR-142-driven BC evolution. A synthetic CpG-miR-142 mimic oligodeoxynucleotide rescues the BC phenotype in miR-142-/-BCR-ABL mice and patient-derived xenografts.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide de Fase Crónica , Leucemia Mieloide , MicroARNs , Animales , Humanos , Ratones , Crisis Blástica , Células Madre
4.
Ann Clin Transl Neurol ; 10(11): 2025-2042, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37646115

RESUMEN

OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease with a complex etiology that lacks biomarkers predicting disease progression. The objective of this study was to use longitudinal cerebrospinal fluid (CSF) samples to identify biomarkers that distinguish fast progression (FP) from slow progression (SP) and assess their temporal response. METHODS: We utilized mass spectrometry (MS)-based proteomics to identify candidate biomarkers using longitudinal CSF from a discovery cohort of SP and FP ALS patients. Immunoassays were used to quantify and validate levels of the top biomarkers. A state-transition mathematical model was created using the longitudinal MS data that also predicted FP versus SP. RESULTS: We identified a total of 1148 proteins in the CSF of all ALS patients. Pathway analysis determined enrichment of pathways related to complement and coagulation cascades in FPs and synaptogenesis and glucose metabolism in SPs. Longitudinal analysis revealed a panel of 59 candidate markers that could segregate FP and SP ALS. Based on multivariate analysis, we identified three biomarkers (F12, RBP4, and SERPINA4) as top candidates that segregate ALS based on rate of disease progression. These proteins were validated in the discovery and a separate validation cohort. Our state-transition model determined that the overall variance of the proteome over time was predictive of the disease progression rate. INTERPRETATION: We identified pathways and protein biomarkers that distinguish rate of ALS disease progression. A mathematical model of the CSF proteome determined that the change in entropy of the proteome over time was predictive of FP versus SP.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Proteoma/metabolismo , Proteómica/métodos , Biomarcadores/líquido cefalorraquídeo , Progresión de la Enfermedad , Proteínas Plasmáticas de Unión al Retinol
5.
Mol Cancer ; 22(1): 64, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36998071

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) exhibits significant genetic heterogeneity which contributes to drug resistance, necessitating development of novel therapeutic approaches. Pharmacological inhibitors of cyclin-dependent kinases (CDK) demonstrated pre-clinical activity in DLBCL, however many stalled in clinical development. Here we show that AZD4573, a selective inhibitor of CDK9, restricted growth of DLBCL cells. CDK9 inhibition (CDK9i) resulted in rapid changes in the transcriptome and proteome, with downmodulation of multiple oncoproteins (eg, MYC, Mcl-1, JunB, PIM3) and deregulation of phosphoinotiside-3 kinase (PI3K) and senescence pathways. Following initial transcriptional repression due to RNAPII pausing, we observed transcriptional recovery of several oncogenes, including MYC and PIM3. ATAC-Seq and ChIP-Seq experiments revealed that CDK9i induced epigenetic remodeling with bi-directional changes in chromatin accessibility, suppressed promoter activation and led to sustained reprograming of the super-enhancer landscape. A CRISPR library screen suggested that SE-associated genes in the Mediator complex, as well as AKT1, confer resistance to CDK9i. Consistent with this, sgRNA-mediated knockout of MED12 sensitized cells to CDK9i. Informed by our mechanistic findings, we combined AZD4573 with either PIM kinase or PI3K inhibitors. Both combinations decreased proliferation and induced apoptosis in DLBCL and primary lymphoma cells in vitro as well as resulted in delayed tumor progression and extended survival of mice xenografted with DLBCL in vivo. Thus, CDK9i induces reprogramming of the epigenetic landscape, and super-enhancer driven recovery of select oncogenes may contribute to resistance to CDK9i. PIM and PI3K represent potential targets to circumvent resistance to CDK9i in the heterogeneous landscape of DLBCL.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Epigénesis Genética , Linfoma de Células B Grandes Difuso , Animales , Ratones , Apoptosis , Línea Celular Tumoral , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Factores de Transcripción/genética , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Resistencia a Antineoplásicos
6.
Alzheimers Dement ; 19(8): 3537-3554, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36825691

RESUMEN

The choroid plexus (ChP) produces and is bathed in the cerebrospinal fluid (CSF), which in aging and Alzheimer's disease (AD) shows extensive proteomic alterations including evidence of inflammation. Considering inflammation hampers functions of the involved tissues, the CSF abnormalities reported in these conditions are suggestive of ChP injury. Indeed, several studies document ChP damage in aging and AD, which nevertheless remains to be systematically characterized. We here report that the changes elicited in the CSF by AD are consistent with a perturbed aging process and accompanied by aberrant accumulation of inflammatory signals and metabolically active proteins in the ChP. Magnetic resonance imaging (MRI) imaging shows that these molecular aberrancies correspond to significant remodeling of ChP in AD, which correlates with aging and cognitive decline. Collectively, our preliminary post-mortem and in vivo findings reveal a repertoire of ChP pathologies indicative of its dysfunction and involvement in the pathogenesis of AD. HIGHLIGHTS: Cerebrospinal fluid changes associated with aging are perturbed in Alzheimer's disease Paradoxically, in Alzheimer's disease, the choroid plexus exhibits increased cytokine levels without evidence of inflammatory activation or infiltrates In Alzheimer's disease, increased choroid plexus volumes correlate with age and cognitive performance.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Proteómica , Envejecimiento , Inflamación
7.
J Proteome Res ; 21(9): 2124-2136, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35977718

RESUMEN

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. MB is classified into four primary molecular subgroups: wingless (WNT), sonic hedgehog (SHH), Group 3 (G3), and Group 4 (G4), and further genomic and proteomic subtypes have been reported. Subgroup heterogeneity and few actionable mutations have hindered the development of targeted therapies, especially for G3 MB, which has a particularly poor prognosis. To identify novel therapeutic targets for MB, we performed mass spectrometry-based deep expression proteomics and phosphoproteomics in 20 orthotopic patient-derived xenograft (PDX) models of MB comprising SHH, G3, and G4 subgroups. We found that the proteomic profiles of MB PDX tumors are closely aligned with those of primary human MB tumors illustrating the utility of PDX models. SHH PDXs were enriched for NFκB and p38 MAPK signaling, while G3 PDXs were characterized by MYC activity. Additionally, we found a significant association between actinomycin D sensitivity and increased abundance of MYC and MYC target genes. Our results highlight several candidate pathways that may serve as targets for new MB therapies. Mass spectrometry data are available via ProteomeXchange with identifier PXD035070.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Animales , Neoplasias Encefálicas/genética , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Niño , Modelos Animales de Enfermedad , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapéutico , Xenoinjertos , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patología , Proteómica
8.
Neuro Oncol ; 24(11): 1857-1868, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35305088

RESUMEN

BACKGROUND: Neddylation inhibition, affecting posttranslational protein function and turnover, is a promising therapeutic approach to cancer. We report vulnerability to MLN4924 or pevonedistat (a neddylation inhibitor) in a subset of glioblastoma (GBM) preclinical models and identify biomarkers, mechanisms, and signatures of differential response. METHODS: GBM sequencing data were queried for genes associated with MLN4924 response status; candidates were validated by molecular techniques. Time-course transcriptomics and proteomics revealed processes implicated in MLN4924 response. RESULTS: Vulnerability to MLN4924 is associated with elevated S-phase populations, re-replication, and DNA damage. Transcriptomics and shotgun proteomics depict PTEN signaling, DNA replication, and chromatin instability pathways as significant differentiators between sensitive and resistant models. Loss of PTEN and its nuclear functions is associated with resistance to MLN4924. Time-course proteomics identified elevated TOP2A in resistant models through treatment. TOP2A inhibitors combined with MLN4924 prove synergistic. CONCLUSIONS: We show that PTEN status serves as both a novel biomarker for MLN4924 response in GBM and reveals a vulnerability to TOP2A inhibitors in combination with MLN4924.


Asunto(s)
Glioblastoma , Fosfohidrolasa PTEN , Inhibidores de Topoisomerasa II , Humanos , Apoptosis , Línea Celular Tumoral , Ciclopentanos/farmacología , Ciclopentanos/uso terapéutico , Glioblastoma/tratamiento farmacológico , Proteína NEDD8/metabolismo , Fosfohidrolasa PTEN/genética , Pirimidinas/farmacología , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Resistencia a Antineoplásicos
9.
J Proteome Res ; 20(6): 3165-3178, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33939924

RESUMEN

Cytoplasmic stress granules (SGs) are dynamic foci containing translationally arrested mRNA and RNA-binding proteins (RBPs) that form in response to a variety of cellular stressors. It has been debated that SGs may evolve into cytoplasmic inclusions observed in many neurodegenerative diseases. Recent studies have examined the SG proteome by interrogating the interactome of G3BP1. However, it is widely accepted that multiple baits are required to capture the full SG proteome. To gain further insight into the SG proteome, we employed immunoprecipitation coupled with mass spectrometry of endogenous Caprin-1, an RBP implicated in mRNP granules. Overall, we identified 1543 proteins that interact with Caprin-1. Interactors under stressed conditions were primarily annotated to the ribosome, spliceosome, and RNA transport pathways. We validated four Caprin-1 interactors that localized to arsenite-induced SGs: ANKHD1, TALIN-1, GEMIN5, and SNRNP200. We also validated these stress-induced interactions in SH-SY5Y cells and further determined that SNRNP200 also associated with osmotic- and thermal-induced SGs. Finally, we identified SNRNP200 in cytoplasmic aggregates in amyotrophic lateral sclerosis (ALS) spinal cord and motor cortex. Collectively, our findings provide the first description of the Caprin-1 protein interactome, identify novel cytoplasmic SG components, and reveal a SG protein in cytoplasmic aggregates in ALS patient neurons. Proteomic data collected in this study are available via ProteomeXchange with identifier PXD023271.


Asunto(s)
Gránulos Citoplasmáticos , ADN Helicasas , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Proteómica , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN , Proteínas de Unión al ARN/genética
10.
Breast Cancer Res ; 22(1): 135, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267867

RESUMEN

BACKGROUND: The lack of specificity and high degree of false positive and false negative rates when using mammographic screening for detecting early-stage breast cancer is a critical issue. Blood-based molecular assays that could be used in adjunct with mammography for increased specificity and sensitivity could have profound clinical impact. Our objective was to discover and independently verify a panel of candidate blood-based biomarkers that could identify the earliest stages of breast cancer and complement current mammographic screening approaches. METHODS: We used affinity hydrogel nanoparticles coupled with LC-MS/MS analysis to enrich and analyze low-abundance proteins in serum samples from 20 patients with invasive ductal carcinoma (IDC) breast cancer and 20 female control individuals with positive mammograms and benign pathology at biopsy. We compared these results to those obtained from five cohorts of individuals diagnosed with cancer in organs other than breast (ovarian, lung, prostate, and colon cancer, as well as melanoma) to establish IDC-specific protein signatures. Twenty-four IDC candidate biomarkers were then verified by multiple reaction monitoring (LC-MRM) in an independent validation cohort of 60 serum samples specifically including earliest-stage breast cancer and benign controls (19 early-stage (T1a) IDC and 41 controls). RESULTS: In our discovery set, 56 proteins were increased in the serum samples from IDC patients, and 32 of these proteins were specific to IDC. Verification of a subset of these proteins in an independent cohort of early-stage T1a breast cancer yielded a panel of 4 proteins, ITGA2B (integrin subunit alpha IIb), FLNA (Filamin A), RAP1A (Ras-associated protein-1A), and TLN-1 (Talin-1), which classified breast cancer patients with 100% sensitivity and 85% specificity (AUC of 0.93). CONCLUSIONS: Using a nanoparticle-based protein enrichment technology, we identified and verified a highly specific and sensitive protein signature indicative of early-stage breast cancer with no false positives when assessing benign and inflammatory controls. These markers have been previously reported in cell-ECM interaction and tumor microenvironment biology. Further studies with larger cohorts are needed to evaluate whether this biomarker panel improves the positive predictive value of mammography for breast cancer detection.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Detección Precoz del Cáncer/métodos , Proteínas de la Matriz Extracelular/sangre , Adulto , Anciano , Biopsia , Mama/diagnóstico por imagen , Mama/patología , Neoplasias de la Mama/sangre , Carcinoma Ductal de Mama/sangre , Carcinoma Ductal de Mama/patología , Estudios de Casos y Controles , Estudios de Cohortes , Proteínas de la Matriz Extracelular/química , Femenino , Humanos , Masculino , Mamografía , Persona de Mediana Edad , Nanopartículas/química , Proteómica/métodos
11.
Sci Rep ; 10(1): 12989, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737368

RESUMEN

Remote ischemic conditioning (RIC), transient restriction and recirculation of blood flow to a limb after traumatic brain injury (TBI), can modify levels of pathology-associated circulating protein. This study sought to identify TBI-induced molecular alterations in plasma and whether RIC would modulate protein and metabolite levels at 24 h after diffuse TBI. Adult male C57BL/6 mice received diffuse TBI by midline fluid percussion or were sham-injured. Mice were assigned to treatment groups 1 h after recovery of righting reflex: sham, TBI, sham RIC, TBI RIC. Nine plasma metabolites were significantly lower post-TBI (six amino acids, two acylcarnitines, one carnosine). RIC intervention returned metabolites to sham levels. Using proteomics analysis, twenty-four putative protein markers for TBI and RIC were identified. After application of Benjamini-Hochberg correction, actin, alpha 1, skeletal muscle (ACTA1) was found to be significantly increased in TBI compared to both sham groups and TBI RIC. Thus, identified metabolites and proteins provide potential biomarkers for TBI and therapeutic RIC in order to monitor disease progression and therapeutic efficacy.


Asunto(s)
Actinas/sangre , Lesiones Traumáticas del Encéfalo , Precondicionamiento Isquémico , Proteómica , Animales , Biomarcadores/sangre , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/terapia , Modelos Animales de Enfermedad , Masculino , Ratones
12.
Mol Cell Proteomics ; 19(10): 1688-1705, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32709677

RESUMEN

Ventilator-associated pneumonia (VAP) is a common hospital-acquired infection, leading to high morbidity and mortality. Currently, bronchoalveolar lavage (BAL) is used in hospitals for VAP diagnosis and guiding treatment options. Although BAL collection procedures are invasive, alternatives such as endotracheal aspirates (ETA) may be of diagnostic value, however, their use has not been thoroughly explored. Longitudinal ETA and BAL were collected from 16 intubated patients up to 15 days, of which 11 developed VAP. We conducted a comprehensive LC-MS/MS based proteome and metabolome characterization of longitudinal ETA and BAL to detect host and pathogen responses to VAP infection. We discovered a diverse ETA proteome of the upper airways reflective of a rich and dynamic host-microbe interface. Prior to VAP diagnosis by microbial cultures from BAL, patient ETA presented characteristic signatures of reactive oxygen species and neutrophil degranulation, indicative of neutrophil mediated pathogen processing as a key host response to the VAP infection. Along with an increase in amino acids, this is suggestive of extracellular membrane degradation resulting from proteolytic activity of neutrophil proteases. The metaproteome approach successfully allowed simultaneous detection of pathogen peptides in patients' ETA, which may have potential use in diagnosis. Our findings suggest that ETA may facilitate early mechanistic insights into host-pathogen interactions associated with VAP infection and therefore provide its diagnosis and treatment.


Asunto(s)
Perfilación de la Expresión Génica , Inmunidad Innata/genética , Neumonía Asociada al Ventilador/genética , Neumonía Asociada al Ventilador/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Líquido del Lavado Bronquioalveolar , Estudios de Cohortes , Femenino , Regulación de la Expresión Génica , Humanos , Intubación Intratraqueal , Masculino , Metabolómica , Persona de Mediana Edad , Neutrófilos/metabolismo , Péptidos/química , Filogenia , Proteoma/metabolismo , Proteómica
13.
ACS Omega ; 5(24): 14360-14369, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32596573

RESUMEN

Lung transplant recipients (LTxRs) with acute rejection (AR) and chronic rejection (bronchiolitis obliterans syndrome [BOS]) induce circulating exosomes known to contain donor human leukocyte antigens and lung-associated self-antigens. Here, we sought to identify proteomic signatures in circulating extracellular vesicles (EVs) that differentiate LTxRs in 4 groups: stable, AR, BOS, or respiratory viral infection (RVI). EVs were isolated from plasma from patients in each group via ultracentrifugation. EV protein cargoes were prepared for shotgun proteomics using liquid chromatography-tandem mass spectrometry. We identified 2 unique proteins for AR, 4 for RVI, 24 for BOS, and 8 for stable LTxRs. Differential analysis of AR, BOS, RVI, and stable proteins identified significantly deregulated proteins (p < 0.05, log2(fold change) > ±1) in each condition (31, 2, and 2, respectively). EVs from LTxRs with AR contained proteins involved in immunoglobulin, complement regulation, coagulation, and innate and adaptive immune response pathways. EVs from LTxRs with BOS revealed enriched immunoglobulin receptors and a carboxypeptidase N catalytic chain. EVs from LTxRs with RVI had an enriched macrophage-stimulating factor. We found unique signatures in LTxRs with AR, BOS, and RVI, highlighting complex immune mechanisms underlying lung allograft rejection. Proteomic signatures in LTxRs' circulating EVs provided insights into immunological mechanisms of graft rejection and RVI.

14.
J Extracell Vesicles ; 8(1): 1685634, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31741725

RESUMEN

Biofluid-accessible extracellular vesicles (EVs) may represent a new means to improve the sensitivity and specificity of detecting disease. However, current methods to isolate EVs encounter challenges when they are used to select specific populations. Moreover, it has been difficult to comprehensively characterize heterogeneous EV populations at the single vesicle level. Here, we robustly assessed heterogeneous EV populations from cultured cell lines via nanoparticle tracking analysis, proteomics, transcriptomics, transmission electron microscopy, and quantitative single molecule localization microscopy (qSMLM). Using qSMLM, we quantified the size and biomarker content of individual EVs. We applied qSMLM to patient plasma samples and identified a pancreatic cancer-enriched EV population. Our goal is to advance single molecule characterization of EVs for early disease detection. Abbreviations: EV: Extracellular Vesicle; qSMLM: quantitative Single Molecule Localization Microscopy; PDAC: Pancreatic Ductal Adenocarcinoma; EGFR: epidermal growth factor receptor 1; CA19-9: carbohydrate antigen 19-9; SEC: size exclusion chromatography; WGA: wheat germ agglutinin; AF647: Alexa Fluor 647; Ab: antibody; HPDEC: Healthy Pancreatic Ductal Epithelial Cell; TEM: Transmission Electron Microscopy.

15.
Sci Rep ; 7(1): 14529, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29109432

RESUMEN

Mutations in Matrin 3 have recently been linked to ALS, though the mechanism that induces disease in these patients is unknown. To define the protein interactome of wild-type and ALS-linked MATR3 mutations, we performed immunoprecipitation followed by mass spectrometry using NSC-34 cells expressing human wild-type or mutant Matrin 3. Gene ontology analysis identified a novel role for Matrin 3 in mRNA transport centered on proteins in the TRanscription and EXport (TREX) complex, known to function in mRNA biogenesis and nuclear export. ALS-linked mutations in Matrin 3 led to its re-distribution within the nucleus, decreased co-localization with endogenous Matrin 3 and increased co-localization with specific TREX components. Expression of disease-causing Matrin 3 mutations led to nuclear mRNA export defects of both global mRNA and more specifically the mRNA of TDP-43 and FUS. Our findings identify a potential pathogenic mechanism attributable to MATR3 mutations and further link cellular transport defects to ALS.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Esclerosis Amiotrófica Lateral/genética , Proteínas Asociadas a Matriz Nuclear/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Humanos , Inmunoprecipitación , Espectrometría de Masas , Mutación/genética , Mapas de Interacción de Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...